Public Health Reports

Vol. 55 • JANUARY 5, 1940 • No. 1

DISABLING MORBIDITY AMONG INDUSTRIAL WORKERS, THIRD QUARTER AND THE FIRST 9 MONTHS OF $1939{ }^{1}$

By William M. Gafafer, Senior Statistician, United States Public Heallh Service

The data on the frequency of sickness and nonindustrial injuries lasting 8 consecutive calendar days or longer during the third quarter and the first 9 months of 1938 and 1939, presented in table 1, are derived from analyses of reports from 26 sick benefit organizations representing approximately 170,000 members in industrial establishments located east of the Mississippi River and north of the Ohio and Potomac Rivers. While the rates for the third quarter and the first 9 months of 1938 and 1939, respectively, are determined for the same 26 organizations, the rates for the first 9 months of the quinquennium, 1934-38, are based on some additional reporting organizations.

THIRD QUARTER OF 1939

A comparison of the rates for the third quarter of 1939 and 1938 reveals only minor differences in the broad cause groups of respiratory diseases, digestive diseases, and nonrespiratory-nondigestive diseases. Of interest, however, are decreases of 20 percent for diseases of the pharynx and tonsils, and for diseases of the stomach, except cancer, the rates for 1939 and 1938, respectively, for both these groups of diseases being the same. Of interest also is an increase of almost 25 percent in the frequency of appendicitis.

DISEASES OF THE SKIN, 1930-39

Attention is also directed to diseases of the skin ${ }^{2}$ which show a slight decrease for the third quarter of 1939 as compared with the corresponding quarter of 1938. The recognition of this more or less favorable rate raises the question of its magnitude in relation to previous years. Data, by quarters, for the years 1930 to 1939, obtained from earlier reports of this series and from table 1, are given

[^0]Table 1.-Frequency of cases of sickness and nonindustrial injuries lasting 8 consecutive calendar days or longer among male employees in various indusiries, by cause, the third quarter of 1939 compared with the third quarter of 1938, and the first 9 months of 1939 compared with the first 9 months of 1938 and 1934-58. inclusive ${ }^{1}$
[Male morbidity experience of industrial companies which reported their cases to the United States Public Health Service]

Cause (numbers in parentheses are disease title numbers from the International List of the Causes of Death, 1929)	Annual number of cases per 1,000 males				
	Third quarter		First 9 months		
	1939	1938	1939	1938	1934-38
Sickness and nonindustrial injuries ${ }^{2}$	68.4	71.1	92.2	82.5	89.5
Nonindustrial injuries (163-198)	11.1	12.1	10.2	11.1	11.5
Sickness ${ }^{\text {2 }}$-..-.-.-.	57.3	59.0	82.0	71.4	78.0
Respiratory diseases	14.1	16.8	36.3	26.1	31.8
Influenza and grippe (11)	3.9	4.4	18.7	9.5	14.6
Bronchitis, acute and chronic (106)	2.2	2.6	4.0	4.0	4.1
Diseases of the pharynx and tonsils (115a)	3.2	4.0	4.7	4.8	5.0
Pneumonis, all forms (107-109)	1.1	1.3	3.0	2.1	2.4
Tuberculosis of the respiratory system (23)	. 5	. 9	. 7	1.0	. 9
Other respiratory diseases (104, 105, 110-114)	3.2	3.6	5. 2	4.7	4.8
Nonrespiratory diseases.	41.1	39.7	43.5	43.2	43.7
Digestive diseases.	14.0	13.2	13.9	13.5	13.7
Diseases of the stomach, except cancer (117,118)	3.2	4.0	3.5	4.1	3.8
Diarrhea and enteritis (120)	1.5	1.3	1.2	. 9	1.3
Appendicitis (121)	4.8	3.9	4.5	4.2	4.3
Hernia (1228)	1.5	1.5	1.6	1.7	1.6
Other digestive diseases (115b, 116, 122b-129)	3.0	2.5	3.1	2.6	2.7
	27.1	26.5	29.6	29.7	30.0
Diseases of the heart and arteries, and nephritis (90-99, 102, 130-132)	3.5	3.6	4.3	4.1	3.9
Other genitourinary diseases (133-138).-..............--	2.5	2.3	2.3	2.4	2.4
Neuralgia, neuritis, sciatica (87a)	2.1	1.8	22	2.1	2.2
Neurasthenia and the like (part of 87b) ---1.-.-.--	. 8	. 8	9	. 9	1.0
Other diseases of the nervous system (78-85, part of 87b)	1.1	1.2	1.1	1.2	1.2
Rheumatism, acute and chronic (56, 57)-	2.5	3.1	3.6	3.8	4.2
Diseases of the organs of locomotion, except diseases of the joints (156b)	2.3	2.4	2.6	2.7	2.9
Diseases of the skin (151-153)	3.4	3.7	2.8	3.1	2.9
Infectious and parasitic diseases (1-10, 12-22, 24-33,	1.8	1.5	2.4	2.3	2.7
All other diseases (45-55, 58-77, 88, 89, 100, 101,	7.1	6.1	7.4	7.1	6.6
Ill-defined and unknown causes (200)	2.1	2.5	2.2	2.1	2.5
Average number of males covered in the record. Number of organizations.	$\begin{array}{\|} 175,584 \\ 26 \end{array}$	$\left\lvert\, \begin{array}{\|c} 165,073 \\ 26 \end{array}\right.$	$\mid \overline{172,156}$	$\left\lvert\, \begin{array}{\|c} 167,922 \\ 26 \end{array}\right.$	160, 245

${ }^{1}$ In 1939 and 1938 the same organizations are included; the rates for the first 9 months of the years 1934-38, however, are based on records from the same 26 organizations and some additional reporting organizations,
${ }^{2}$ Exclusive of disability from the venereal diseases and a few numerically unimportant causes of disability.
Table 2.-Frequency of disabling cases of skin diseases ${ }^{1}$ lasting 8 consecutive calendar days or longer among male employees in various industries, by quarter years, 1930 to 1939, inclusive

Year	Annual number of cases per 1,000 males			
	First quarter	Second quarter	Third quarter	Fourth quarter
1930	3.6	3.9	4.4	3.7
1931	2.7	3.3	3.8	3.1
1932.	2.3	2.8	3.4	2.6
1933....	2.5	1.9	3.5	2.7
1934...	2.3	2.2	3.3	2.4
1935-.	2.4	2.2	3.5	2.7
1936...	2.4	2.4	3.8	3.3
1937.	3.1	2.9	3.4	3.1
1938.	3.0	2.7	3.7	2.5
1939.	2.7	2.2	3.4	
Mean, 1930-39	2.7	2.7	3.6	2.9

[^1]in table 2 and are shown graphically in figure 1. The frequency of diseases of the skin over this 10 -year period is of considerable interest. Perhaps most outstanding is the fact that for each of these years the rate for the third quarter is the highest of all quarter rates. This is particularly striking when it is considered that a time curve representing total disabilities is generally lowest in the third quarter, and that the definition of "diseases of the skin" does not include sunburn, poisoning by organic substances, or the mycoses. It will be observed, furthermore, that while the mean (3.6) of the 10 third-quarter rates is the highest of the four means representing the four sets of quarters, the stability of the third-quarter rates is greatest, varying, as they do, in the relatively narrow zone of 3.3 (1934) to 4.4 (1930).

QUARTER IN WHICH DISABILITY BEGAN
Figure 1.-Frequency (logarithmic) of disability lasting 8 consecutive calendar days or longer caused by diseases of the skin, by quarter-year of onset, 1930-39, inclusive. Diseases of the skin (titles 151-153 of the International List of Causes of Death, 1929) includes furuncle, carbuncle; phlegmon, acute abscess; and other diseases of the skin and annexa, and of the cellular tissue. This definition does not include sunburn, poisoning by organic substances, or the mycoses. (Male morbidity experience of industrial companies which reported their cases to the United States Public Health Service.)

FIRST 9 MONTHS OF 1939

An inspection of the frequencies of sickness and nonindustrial injuries for the first 9 months of 1939 and 1938 in the light of the experience recorded for the third quarters of the same years reveals that the unfavorable sickness rate for 1939 is due principally to the excessive rate for influenza and grippe previously referred to in the summaries for the first and second quarters of the year.

MORTALITY RATES AND ECONOMIC STATUS IN RURAL AREAS ${ }^{1}$

By Harold F. Dorn, Statistician, United States Public Health Service

It has been believed for some time that health and economic status are directly related. Such data as exist indicate that both morbidity

[^2]and mortality rates are generally higher among the poor than among the well-to-do, although some deviation from this occurs when specific causes of illness or death are considered. With very few exceptions, however, the available information refers solely to village or city residents. Almost no data concerning the relationship of health and economic status of rural residents in the United States are available.

During the course of a study of differential rural-urban mortality in Ohio in 1930, it proved feasible to tabulate the data for the rural population by an approximate index of economic status. It is the purpose of this paper to discuss the differences in the mortality rates of rural people living in counties of varying agricultural productivity.

The rural population of Ohio is far from homogeneous. In the northeastern part of the State and around the large industrial cities the rural population is mainly nonfarm, as defined by the census, and seeks a livelihood in the adjacent cities. This nonfarm element of the rural population is supplemented by miners in the eastern and southern part of the State. The farm population falls into two fairly well-defined groups. North of the Ohio River is an area of marginal agricultural land, while nortbwestern Ohio lies adjacent to the corn belt, a productive agricultural section.

Since the mortality records did not record information which could be used in accurately subdividing the rural population by economic status, the counties were arranged in groups on the basis of census data and with the advice of members of the Department of Rural Economics of Ohio State University. Counties with a large proportion of rural-farm population were subclassified as having good, fair, and poor agriculture; counties with a large proportion of rural nonfarm population were subclassified as industrial or mining; a third group included with the rural-nonfarm counties was classed as mixed farm and nonfarm, since neither element of the population was predominant.

The mortality records for 1930 were then tabulated on the basis of this grouping of the counties of the State. All nonresident deaths were allocated to the place of residence. The data used throughout this paper refer to the native white population.

Tables 1 and 2 present the number of resident deaths per 1,000 population by age and sex for the rural native white population of the various groups of counties in Ohio for 1930. In the counties in which the rural population is mainly nonfarm, the mortality rates are, as a whole, lowest in the industrial and highest in the mining counties. This difference is less marked among females than among males. The largest differential exists at the younger ages; after age 55 the rates in the mining counties are no greater on the whole and, indeed,
are slightly less than the corresponding rates in the other nonfarm counties.

Table 1.-Death rates per 1,000 population for native white males in different types of rural communities, Ohio, 1930

Age	Total rural	Rural-farm				Rural-nonfarm			
		Total	Good agriculture	Fair agriculture	Poor agriculture	Total	Mining	Industrial	Mixed farm and nonfarm
Under 5.	16.5	16.8	14.4	14.8	21.6	17.3	22.5	13.3	18.6
5-9	1.9	1.8	1.6	1.9	1.8	1.9	1.4	2.0	2.0
10-14	1.4	1.5	1.6	1.0	2.1	1.4	. 9	1.6	1.4
15-19	2.2	1.6	1.1	1.8	1.7	2.7	2.9	2.5	2.8
20-24	3.6	3.6	3.1	3.7	3.9	3.6	6. 5	2.8	4.1
25-29	3.7	4.0	3.2	3. 9	4.6	3.4	b. 0	3.0	3.6
30-34	3.4	3.3	1.5	4.3	3.0	3.5	5.4	2.6	4.4
35-44.	4.9	4.5	3.6	4.7	4.8	5.2	9.4	4.6	4.6
45-54	$\begin{array}{r}7.6 \\ \hline 1.8\end{array}$	7.2	6.9 159	7.6	6.9	7.8	9.6	7.8	7.2
$55-64$	16.8	16.6	15.9	17.9	15.1	17.0	17.4	17.6	16.3
65-74.	43.8	43.8	42.6	41.4	43.7	43.9	42.3	47.2	40.2
$75+$	117.8	118.0	128.2	113.6	117.7	117.6	132.0	114.3	116.6
All ages.	11.0	11.7	11.0	11.7	12.3	10.4	11.8	9.5	11.2
Adjusted rate	8.7	8.6	7.9	8.5	9.2	9.0	10.7	8.3	8.9

${ }^{1}$ These and subsequent adjusted rates are based on the age distribution of the standard million population of England and Wales, 1901.

Table 2.-Death rates per 1,000 population for native white females in different types of rural communities, Ohio, 1930

Age	Total rural	Rural-farm				Rural-nonfarm			
		Total	Good agriculture	$\begin{aligned} & \text { Fair } \\ & \text { agri- } \\ & \text { culture } \end{aligned}$	$\begin{gathered} \text { Poor } \\ \text { agri- } \\ \text { culture } \end{gathered}$	Total	Mining	Industrial	Mixed farm and nonfarn.
Under 5.	13.8	14.0	12.9	13.0	16.4	13.7	19.0	10.7	16.3
5-9.1.	1.5	1.7	1.1	1.9	1.6	1.4	1.5	1.2	1.6
10-14.	1.3	1.3	. 3	1.4	1.8	1.4	1.2	1.2	1.6
15-19	2.1	1.8	1.3	1.7	2.5	2.2	1.9	1.9	2.9
20-24	3.4	3.1	3.8	2.6	3.5	3.5	3.5	3.4	3.9
25-29.	3.6	3.7	3.7	2.9	5.0	3.5	2.8	3.3	4.3
30-34	3.8	4.3	4.0	3.5	5.9	3.4	3.6	3.2	3.8
35-14.	4.7	4.5	4.7	4.3	4.9	4.8	5.8	4.6	4.8
45-54	8.0	7.5	8.4	7.8	6.3	8.6	9.5	8.1	9.0
55-64	16.6	16.2	15.7	17.2	14.8	17.0	14.8	18.9	15.1
65-74	40.3	39.5	39.5	40.7	37.7	41.2	36. 5	42.8	40.9
$75+$	121.7	110.1	121.1	123.0	115.1	123.5	107.9	132.1	119.0
All ages	10. 5	11.1	10.6	11.1	11.7	9.9	9.8	9.2	11.1
Adjusted rate	8.3	8.0	8.0	8.1	8.6	8.4	8.6	8.1	8.8

These differences are in general agreement with what one would expect. In addition to the occupational hazards of mining, the population of these counties is, as a rule, further removed from adequate health and medical facilities and services than is the population in the industrial counties. That occupational hazards are important, however, is indicated by the fact that the difference in mortality rates is greater for males than it is for females.

In the counties in which the rural population is engaged mainly in farming, there is a negative correlation between the mortality
rate and agricultural productivity; that is, the death rate is lowest in the best agricultural areas. The largest differences are in the younger age groups; after age 45 the rates in the poor agricultural regions are no greater, and are even somewhat smaller than in the better farming counties.

The classification used in tables 1 and 2 is too detailed for comparison of specific causes of death. For this purpose the counties have been combined into two groups, one composed of counties in the poor agricultural and mining areas and representing relatively poor economic status, and another composed of the remainder of the counties representing relatively good economic status. Table 3 presents the mortality rates for these two groups.

Table 3.-Death rates per 1,000 native white population by age and sex in different types of rural communities, Ohio, 1930

Age	Male		Female		A80	Male		Female	
	Good economic status	Poor economic status	Good economic status	Poor economic status		Good economic status	Poor economic status	Good economic status	Poor economic status
Under 5	14.0	20.5	11.8	16.9	35-44.	4.4	5.6	4.5	5.0
5-9.-	1.9	1.8	1.4	1.6	45-54-..---.-.-.-.-	7.6	7.5	6. 7	8.1
10-14-	1.4	1.5	1.1	1.6	55-64-..---...-.---	17.4	15.9	17.6	14.9
15-19.	2.0	2.4	1.7	2.6	65-74.	45.1	41.9	41.3	38.9
20-24.	3.2	4.3	3.2	3.7	75+	116.7	119.4	126.1	115.6
25-29.	3.4	4.2	3.2	4.2	All ages	10.5	11.7	10.1	11.0
30-34...	3.0	4.1	3.4	4.5	Adjusted rate...-	8.3	9.3	7.9	8.7

On the average, the death rates in the areas of poor economic status are about 10 percent greater than the corresponding rates in the areas of good economic status when adjustments are made for differences in age distribution of the populations involved. After age 55 , however, the differential is reversed and the rates are higher in the good economic regions, except for males over 75 years of age.

That the death rate is greater in regions of poor economic status is not surprising. In such areas the wealth necessary to provide adequate health and medical facilities is usually lacking, standards of living are lower, and public health services are regarded as luxuries rather than necessities. It is interesting to observe that in the older age groups there is a fairly clear-cut tendency for mortality rates to be lower in the regions of poor economic conditions. It may be, as some have suggested, that under favorable health conditions a significant proportion of weaklings survive through adolescence and early adult life only to die at increasing rates when the diseases of late adult life begin to take their toll.

If differences in medical and health facilities and services play a part in bringing about the difference in mortality between persons living in counties with good economic conditions and those living in
counties with poor economic conditions, then the differences would be expected to be especially noticeable for diseases which are most easily prevented or cured. One such group of diseases comprises those associated with infant deaths. The data in table 4 show that the infant mortality rate is more than 40 percent greater in the poor economic areas. Although this is especially true for deaths due to diarrhea, enteritis, and the principal contagious diseases of childhood, it also exists for every cause except congenital malformations. The extremely high death rates from the principal contagious diseases and diarrhea and enteritis prevail throughout the entire first 5 years of life, with the rates in the regions of poor economic status between two and three times as large as the corresponding rates in the better economic areas (tables 5 and 6).

Table 4.-White infant deaths and deaths per 1,000 live white births for selected causes of death in different types of rural communities, Ohio, 1930

Cause of death	Rates		Deaths	
	$\begin{aligned} & \text { Good } \\ & \text { economic } \\ & \text { status } \end{aligned}$	$\begin{aligned} & \text { Poor } \\ & \text { economic } \\ & \text { status } \end{aligned}$	$\begin{aligned} & \text { Good } \\ & \text { economic } \\ & \text { status } \end{aligned}$	$\begin{aligned} & \text { Ponr } \\ & \text { economic } \\ & \text { status } \end{aligned}$
Whooping cough, measles, scarlet fever, diphtheria....-	1.3	4.2	29	61
	7.9	11.6	177	170
Syphilis and gonorrhea--	.4	. 9	10	13
Diarrhea and enteritis.	5.2	11.4	117	167
Congenital malformations.	7.0	6.0	158	88
Premature birth.-	14.4	18.2	322	266
Birth injury------	3.5	4.7	79	69
Accidents....	1.3	3.3	29	49
Other causes.	11.1	14.2	249	208
Totai-	52.2	74.5	1,170	1,091

Table 5.-Death rates per 100,000 native white population by age and sex from children's diseases ${ }^{1}$ in different types of rural communities, Ohio, 1930

Age	Male		Female	
	$\begin{gathered} \text { Good } \\ \text { economic } \\ \text { status } \end{gathered}$	$\begin{aligned} & \text { Poor } \\ & \text { economic } \\ & \text { status } \end{aligned}$	$\begin{aligned} & \text { Good } \\ & \text { economic } \\ & \text { status } \end{aligned}$	Poor economic status
Under 5 5 and over.	$\begin{array}{r}59 \\ 4 \\ \hline\end{array}$	172 7	59 6	134 6
All ages.	9	23	12	19

[^3]Table 6.-Death rates per 100,000 native white population by age and sex from diarrhea and enteritis, in different types of rural communities, Ohio, 1930

Age	Male		Female	
	$\begin{aligned} & \text { Good } \\ & \text { economic } \\ & \text { status } \end{aligned}$	$\begin{aligned} & \text { Poor } \\ & \text { cconomic } \\ & \text { status } \end{aligned}$	$\begin{aligned} & \text { Good } \\ & \text { economic } \\ & \text { status } \end{aligned}$	$\begin{aligned} & \text { Poor } \\ & \text { economic } \\ & \text { status } \end{aligned}$
Under 5 \qquad 5 and over...	169 4	326 6	139 4	315 8
All ages.	. 20	38	17	40

In keeping with the differences observed in the death rates from all causes, the mortality from tuberculosis, influenza, pneumonia, and accidents is consistently greater in the poor ernnomic regions during childhood, adolescence, and early adult life, but at advanced ages the differences are not so clear-cut (tables 7, 8, and 9). For females the mortality from tuberculosis is consistently lower throughout life in the better economic areas, with the greatest differences from 25 to 45 years of age. In the case of influenza, pneumonia, and accidents, female mortality rates are lower in the good economic regions until middle life but higher after those ages, although the differences are unimportant until age 65.

Table 7.-Death rates per 100,000 native white population by age and sex from tUberculosis in different types of rural communities, Ohio, 1930

Age	Male		Female		Age	Male		Femalo	
	Good economic status Sarus	Poor economic status \qquad	Good economic status \qquad	Poor economic status		Good economic status status	Poor economic status	Good economic status status	Poor economic status \qquad
Under 15 15-24 25-34	$\begin{array}{r} 7 \\ \begin{array}{c} 27 \\ 50 \end{array} \end{array}$	$\begin{aligned} & 10 \\ & 43 \\ & 40 \end{aligned}$	$\begin{aligned} & 11 \\ & 62 \\ & 68 \end{aligned}$	7 78 110		$\begin{array}{r} 80 \\ 71 \\ 716 \end{array}$	$\begin{array}{r}63 \\ 97 \\ 108 \\ \hline\end{array}$	42 112 124	79 128 130
$\begin{aligned} & 35-44-\ldots . . .-. \\ & 45-54-\ldots-. \end{aligned}$	$\begin{aligned} & 39 \\ & 40 \end{aligned}$	$\begin{aligned} & 73 \\ & 63 \end{aligned}$	$\begin{aligned} & 44 \\ & 37 \end{aligned}$	$\begin{aligned} & 63 \\ & 39 \end{aligned}$	All ages_-........	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 46 \\ & 44 \end{aligned}$	${ }_{43}^{44}$	57 57

Table 8.-Death rates per 100,000 native white population by age and sex from influenza and pnedmonia in different types of rural communities, Ohio, 1930

Age	Male		Female		Age	Male		Female	
	Good economic status	Poor economic status	Good economic status status	Poor economic status		Good economic status status	Poor economic status	Good economic status status	Poor economic status
Under 5.	239	352	197	299	55-64....	104	95	121	108
5-14.......	14	19	8	22	65-74	280	266	326	231
15-24-.	17	15	15	23	75+	909	1, 018	1,279	1,176
25-34	36	34	20	29	All ages--	89	106	91	108
35-44	${ }_{53}^{33}$	36	28	38	Adjusted rate....	76	91	74	89
	53	63	53	7					

Table 9.-Death rates per 100,000 native white population by age and sex from accidental causes in different types of rural communities, Ohio, 1930

Age	Male		Female		Age	Male		Female	
	Good economic status	Poor economic status	Good economic status	Poor economic status		Good economic status	Poor economic status	Good economic status	Poor economic status
Under 5.	71	152	88	102	55-64.............	167	112	42	39
5-14.	60	51	33	39	65-74.	229	258	178	157
15-24....-	113	146	33	36	$75+$	520	676	850	817
25-34.	88	153	25	29	All ages.	115	145	64	
35-44	119	168	22	26	Adjusted rate....-	106	138	64	87
46-54.	106	135	40	36					

There is more variability among males, however. Mortality rates from tuberculosis are definitely lower until age 55 in the good economic areas but no consistent pattern appears after that age. Except for the very young and the very old, under 5 years and over 75 years, there is no significant difference in mortality from influenza and pneumonia. At both ends of the life span, though, mortality is considerably higher among persons living in regions of poor economic conditions. Mortality from accidental causes, with the exception of ages 5 to 14 and 55 to 64, is definitely greater in the poor economic areas. Of course, part of this higher mortality results from mining accidents, but the differences are still significant even at the ages when such accidents are unimportant, especially under 5 years of age when the rates in the two areas differ more than 100 percent.

Until about 45 or 50 years of age there is little difference between the two regions in mortality from the principal diseases of late adult life, cancer, heart disease, cerebral hemorrhage, and nephritis, although the rates in the poor economic area tend to be slightly higher (tables 10-13). After these ages, however, the death rates from cancer, heart disease, and nephritis are definitely greater in the regions of good economic status with one or two exceptions. When the rates are adjusted for differences in age distribution of the populations involved, the average rate is slightly higher in the good economic areas for each of these diseases except for heart disease among males where the rates are equal.

Table 10.-Death rates per 100,000 native white population by age and sex from CANCER in different types of rural communities, Ohio, 1930

Age	Male		Female		Age	Male		Female	
	Good economic status	Poor economic status	Good economic status status	Poor economic status status		Good economic status	Poor economic status	Good economic status	
Under 35 35-44.........	5 27	27	4 61	76	65-74.	597 971	465	573 1,141	500 1,096
$\begin{aligned} & 45-54 \ldots . . . \\ & 55-64 \ldots \end{aligned}$	62 223	75 182	172 355	193 291	All ages Adjusted rate.------	87 59	78 51	112 81	114 80

Table 11.-Death rates per 100,000 native white population by age and sex from cerebral hemorrhage in different types of rural communilies, Ohio, 1930

Age	Male		Female		Age	Male		Female	
	Good economic status	Poor economic status	Good economic status	Poor economic status		Good economic status	Poor economic status	Good cconomic status	Poor economic status
Under 45.	5	3	6	7	75+	2, 209	2,007	2, 239	2,163
45-54...	66	58	95	73	All ages_..--.----	115	120	124	133
55-64.-	188	185	234	239	Adjusted rate...-	74	71	83	81
65-74...	676	760	767	773					

Table 12.-Death rates per 100,000 native white population by age and sex from heart disease in different types of rural communities, Ohio, 1930

Age	Male		Female		Age	Male		Female	
	Good economic status	Poor economic status	Good economic status status	Poor economic status		Good economic status	Poor economic status	Good eco$\underset{\text { nomic }}{\text { status }}$ status	Poor economic status
$\begin{aligned} & \text { Under } 25 . . . \\ & 25-34 \end{aligned}$	11 24	${ }_{28}^{13}$	13 29	13 43	65-74-....................................	1,301	1,191	1,083	1,030 2,930
35-44. 45-54 55-64.	47 136 407	$\begin{array}{r}66 \\ 121 \\ \mathbf{1 2 9} \\ \hline\end{array}$	48 131 391	54 135 301	All ages ${ }^{\text {Adjusted }}$ rate....--	215 142	122	203 139	193 124

Table 13.-Death ratee per 100,000 native white population by age and sex from nephritis ${ }^{1}$ in different types of rural communities, Ohio, 1930

Age	Male		Female		Age	Male		Female	
	Good economic status	Poor economic statu	Good economic status status	Poor economic status		Good economic status	Poor economic status	Good economic status	
Under 35. 35-44......	18	11	28	11 83	65-74.-.-.-.-.-.-.-.---	1, $\begin{array}{r}441 \\ \hline\end{array}$	414 1,380	385 1,010	299 977
$\begin{aligned} & 45-54 \\ & 55-64 \\ & \hline \end{aligned}$	$\begin{array}{r} 52 \\ 188 \end{array}$	56 161	61 161	52 121	All ages-..---...--	$\begin{aligned} & 83 \\ & 56 \end{aligned}$	$\begin{aligned} & 83 \\ & 51 \end{aligned}$	70 49	69 47

${ }^{1}$ Includes other diseases of the kidneys and ureters.
Although these data offer only indirect evidence, they do essentially corroborate existing information concerning the relationship of mortality rates and economic status. The evidence must be regarded as indirect since it was impossible to classify families according to economic status. It undoubtedly is true that there were some families in the good economic regions whose income was insufficient to maintain what would generally be considered an adequate standard of living, just as there probably were families in the poor economic regions whose income was more than sufficient to maintain such a standard of living. The mortality rates in this paper represent not only the direct results of the economic status of a family upon the health of its members but also the effects arising from the ability of the community to maintain essential medical and health facilities. Because of the virtual absence of any information concerning the relationship of mortality rates and economic status in rural cases, it seemed desirable to present these data even though they are not as specific as might be desired.
Quite apart from the corroborating evidence of previous investigations, the results of the present study are in general agreement with a priori expectation. If, as is commonly believed, the decline in the death rate has been largely produced by the widespread application
of the principles of medicine, hygiene, and sanitation in combination with a rising standard of living, then the greatest differences between the mortality rates of persons living in regions of good economic status and those living in regions of poor economic status would be expected to occur for diseases most readily prevented by the application of these principles. The higher mortality rates in the poor economic regions for diseases of infancy, diarrhea, enteritis, tuberculosis, and the principal diseases of childhood, measles, whooping cough, scarlet fever, and diphtheria, are in keeping with expectation.

The fact that the death rates from the important diseases of late adult life are somewhat lower in the poor economic regions would appear at first sight to support the theory that modern medical and public health practices tend to lessen the effects of natural selection and to preserve a larger proportion of the weak and unfit than would otherwise be true. According to this theory, high death rates during infancy and childhood eliminate the least physically fit members of society so that attempts to decrease mortality at those ages, if successful, would weaken the race. It does not seem necessary to examine the validity of this theory at this time, especially inasmuch as there is practically no direct evidence pro or con. It is unquestionably true that modern health activities do preserve for many years the lives of many persons who under conditions existing a century ago would have succumbed at an early age to some disease which is now prevented or cured. Whether or not this affects the physical vigor of the race is a debatable question. At least very few persons recommend the cessation of medical care and public health services because of their alleged harmful effects upon the physical health of the population.

SUMMARY

It is commonly believed that health and economic status are directly related. Existing data confirm this belief, especially for the urban population. However, almost no information is available concerning either the total amount.of illness or its variation among persons of different economic status in rural areas.

Mortality records for the rural native white population of Ohio were tabulated by counties divided into two groups, one group comprising counties in poor agricultural areas and the other comprising counties in good agricultural areas.

The standardized death rate in the poor economic areas was about 10 percent greater than the corresponding rate in the good economic areas. The difference was particularly noticeable at the younger ages; however, after age 55 the rates in the good agricultural areas were slightly greater.

The difference in mortality rates was greatest for the diseases which modern medical and public health practices have been most successful in controlling or preventing. The infant mortality rate was 52 per 1,000 live births in the good economic areas but 75 per 1,000 live births in the poor economic areas. The rates for the principal communicable diseases of childhood were from two to three times higher in the poor areas. Smaller but corresponding differences were reported for deaths due to tuberculosis, diarrhea and enteritis, accidents, and influenza and pneumonia.

The standardized mortality rates from cancer, cerebral hemorrhage, heart disease, and nephritis were slightly higher in the good economic areas. Before age 50 there was little or no difference in the rates for these diseases, but after that age the rates in the good economic areas were generally higher.

THE EFFECT OF SULFAPYRIDINE AND SULFANILAMIDE WITH AND WITHOUT SERUM IN EXPERIMENTAL MENINGOCOCCUS INFECTION ${ }^{12}$

By Sara E. Branham, Senior Bacteriologist, United States Public Health Service

In 1937 Buttle, Gray, and Stephenson (1) and Proom (2) reported the protection of mice against meningococcus infection with sulfanilamide. Very soon afterward Branham and Rosenthal (8) described the apparently synergistic action of immune serum with sulfanilamide in such infectior a. This was almost immediately confirmed by Brown (4). Since then sulfanilamide has been used extensively in human cases of meningococcus infections. More recently sulfapyridine, introduced by Whitby (5), has been used similarly and there has been some discussion as to the relative merits of the two drugs. Few have used the drugs alone in a significant number of cases. Some of the most valuable reports on the use of drug alone have been those of Schwentker, Gelman, and Long (6), Willien (7), Carey (8), Hobson, Oxon, and MacQuaide (9), Muraz, Chirle, and Quéguiner (10), Craddock (11), Somers (12), and Bryant and Fairman (18). The last two reports include together nearly 1,000 cases, and indicate that drug therapy is to be a great boon in isolated places where serum has always been difficult to obtain. Muraz and Craddock used sulfanilamide exclusively, and Somers used sulfapyridine.

In most instances both serum and drug have been used and every imaginable variation in method has been employed. There have been a few reports in which carefully controlled groups of cases have been treated by a planned method, of which may be mentioned those

[^4]of Banks (14), Waghelstein (15), Smith, Maxson, and Murphey (16), and Clyde and Neely (17). Each of these reports describes more than 100 cases, a total of about 500 cases, in which alternating groups were given serum only, drug only, and serum and drug. Antitoxin has been used more often than the usual antibacterial serum. In most of these studies the combination of the serum and drug has given most favorable results, although the difference has not always been conspicuous.

Almost every factor entering into clinical studies is variable and it is often difficult to evaluate the results unless a large number of cases is included. A quantitative study of these two drugs in meningococcus infections of mice and of their action with and without serum has seemed indicated. Our previous studies on the effect of combined serum and sulfanilamide therapy had been done with cultures varying greatly in virulence and with mice obtained from the open market. It was decided to standardize as much as possible the factors involved in the present studies.

Only pure line "CFW" (Swiss) mice inbred by brother-sister matings and weighing 16-20 grams have been used. Approximately an equal number of males and females were included.

The 6 strains of meningococci (3 of Group I and 3 of Group II) were kept at maximum virulence for mice throughout the whole period of study by daily transfer on rabbit blood agar and occasional passage through mice. The term "maximum virulence" means that from 2 to 10 meningococci suspended in mucin would kill a mouse weighing 16-20 grams in 48 hours. Our inbred mice became so susceptible that the concentration of the mucin in which the meningococci were suspended was reduced to 3.5 percent. The same lot of Wilson's granular mucin was used throughout. Five-hour cultures on rabbit blood agar slants were used. With a suspension containing approximately $2,000,000,000$ meningococci as a starting point, 10 -fold dilutions were made. At this rate dilution 10^{-9} should contain 2 meningococci. Obviously, wide variations are bound to occur, but a standard test dose of 1 cc . of 10^{-4} intraperitoneally was adopted and used throughout. This dose represented roughly 200,000 meningococci or 100,000 minimum fatal doses. The virulence of the culture was always checked in each test by including groups of control mice given 1 cc . of $10^{-7}, 10^{-8}$, and 10^{-9} dilutions.

The same lots of sulfanilamide and sulfapyridine were used throughout these experiments. The drugs were suspended in 5-percent acacia and fed to the mice intragastrically by means of a child's size silver Eustachian tube catheter attached to a tuberculin syringe. The dose was usually contained in 0.2 cc . volume. A single dose was given. In the earlier experiments the drug was given immediately after the culture; later it was given 2 hours after the culture.

The sera used included 2 polyvalent antimeningococcic whole sera (horse), 2 polyvalent refined and concentrated sera (horse), 1 antitoxin (horse), 1 monovalent Group I rabbit serum, and 1 pooled normal horse serum. At least 3 dilutions were used in every experiment, and these were chosen on the basis of preliminary tests in mice. All were compared with our regular control antimeningococcic serum M 19, which was also used in many experiments. Serum dilutions were made in physiological salt solution and injected intraperitoneally in a volume of 0.5 cc . In the earliest experiments the serum was given before the culture; later it was given 2 hours after the infecting dose. This later plan was followed in the experiments reported here.

With both serum and drugs the dosage chosen was planned to be that which gave approximately 50 percent survival among the mice. Then the effect of the combination of serum and drug on the percentage of survival could be observed. In these studies of the protective activity of the two drugs, toxicity and rate of absorption were not considered.

The amounts of sulfanilamide and sulfapyridine that would protect approximately 50 percent of the mice to which a single dose was given by mouth were determined. The amount of drug required for this purpose was much less than has been used in other reported experiments where the protection of all mice was desired. Different strains of meningococci varied much in sensitivity to the drug, but in general 1 to 4 mg . of sulfanilamide, with an average dose of 2 mg ., and 0.1 to 0.4 mg . of sulfapyridine, with an average dose of 0.2 mg ., was the amount required. About ten times as much sulfanilamide as sulfapyridine was needed to protect 50 percent of the mice given 100,000 minimum fatal doses of meningococci. With sulfanilamide the amount of protection was in direct proportion to the size of the dose used. With sulfapyridine the same amount of protection was often observed to occur over a range of minute doses which were less than the amount required to protect all mice. Assuming that the drugs were completely absorbed by the mice, the concentration in the mouse would be less than might be expected to give a bacteriostatic action; that of sulfanilamide would be $1: 10,000$ and that of sulfapyridine $1: 100,000$. Neter (18) found some bacteriostatic action of sulfanilamide on meningococci in spinal fluid in a dilution of $1: 10,000$.

There was a great variation in the susceptibility of the individual strains of meningococci to the two drugs. Since all strains were at maximum virulence for mice, this difference, which was constant for each strain, could not be attributed to variation in virulence. Tables 1 and 2 show this difference. Strain 1041 (I) was most susceptible to both sulfanilamide and sulfapyridine. An amount of sulfanilamide that completely protected all mice against strain 1041
showed 80 percent mortality with 1027 of the same serological group. Strains 1054 (II) and 1037 (I) came next. Strains 1027 (I) and 963 (II) were fourth and fifth, and strain 1108 (II) was least susceptible. It seemed that the Group I strains were somewhat more susceptible to both drugs than the Group II strains, although No. 1054 (II) was an exception to this rule. In general, it may be said that gram for gram it required ten times as much sulfanilamide as sulfapyidine to protect a mouse of the weight used.

Table 1.-Variation in response of 6 strains of meningococei to sulfanilamide ${ }^{2}$

Strain	Percentage of deaths according to amount of sulfanilamide given				
	1 mg.	2 mg .	4 mg .	8 mg .	No drug
1027 I.	80	10	10	0	100
1041 I	0	0	0	0	100
1037 I	40	0	0	0	90
963 II	60	60	0	0	100
1054 II.	60	0	0	0	100
1108 II.	80	60	60	60	90

${ }^{1} 100,000$ minimum fatal doses of maximum virulence cultures.
Table 2.-Variation in response of 6 strains of meningococci to sulfapyridine ${ }^{1}$

Strain	Percentage of deaths according to amount of sulfapyridine given				
	0.1 mg .	0.2 mg .	0.4 mg.	0.8 mg .	No drug
1027 I.	100	80	60	0	100
1041 I.	80	40	0	0	90
1037 I.	60	60	40	0	100
963 II	100	100	60	0	100
1054 II.	60	80	0	0	100
1108 II.	100	100	60	80	100

${ }^{1} 100,000$ minimum fatal doses of maximum virulence cultures.
It was expected that the different immune sera used would vary greatly in their protective action, and this was indeed the case. With the Group I strain (1027) used routinely by us in our regular mouse protection tests the amount of serum required to give 50 percent survival varied among the 6 sera used from as little as 0.000625 cc . to a point where 0.1 cc . failed to protect 50 percent of the mice. Table 3 shows the amounts of these sera required to protect 50 percent of the mice against infection with this Group I mouse strain.
Table 4 indicates the reaction of the six strains of meningococcus included in this study to a very good concentrated serum. One is struck immediately by the lower protection afforded the Group II strains as compared with tbose of Group I, although this serum is relatively richer in both agglutinins and precipitins for Group II than most polyvalent antimeningococcic sera. This is not a new obser-
vation. One is also struck by the variation in response of the individual strain of either serological Group to the same serum. Here the dilution giving 50 percent protection varies from $1-370$ to less than 1-10 for the same serum with six strains of maximum virulence. The Group I strains responded to the serum in the following order: 1041, 1037, 1027. Among the Group II strains, 1054 is unaffected by serum, whereas 963 and 1108 respond to large doses. It is interesting to note that 1054 is most sensitive to the drug, though most serum resistant, of the Group II strains whereas 1108 responded very poorly to either drug when given alone in the doses used.

Table 3.-Amounts of different antimeningococcic sera required to give 50 percent protection of mice against meningococcus 1027 I ${ }^{1}$

Serum	Dilution	Survivals	Deaths	Accumulated		Percent survivals	Dilution for 50 percent survivals
				Survivals	Deaths		
A....---....-	1:50			16	${ }_{2}$	89 57	
	1:100	2	8	8	14	13	$\left.{ }_{\text {c }} \mathbf{0} 1120044 \mathrm{cc}\right)$.
	1:60	2	8	12	8	60	(0.0044 cc).
	1:120	4	6	10	14	42	1:89.
	1:240	6	4	${ }^{6}$	18	25	(0.0056 cc).
	1:60	9	1	22	1	95	
C...........D............	1:120	8 5	2 5	$\begin{array}{r}13 \\ 5 \\ \hline\end{array}$	3 8 8	81	$1: 200$.
	1:400	8	2	16	8	88	(0.0025 cc).
	1:800	4	6	8	8	50	1:800.
E.	1:1600	4	${ }^{6}$	4	14	22	(0.000625 cc).
	1:200	8	2	18	${ }^{2}$	90	
	1:400	6 4	4	10 4	$\begin{array}{r}6 \\ 12 \\ \hline\end{array}$	62 25	$\begin{aligned} & 1: 500 . \\ & (0.001 \mathrm{cc}) . \end{aligned}$
F.-	1:10	0	10	0	12 10	25	(0.001 cc).
	1:20	0	10		20	0	
	1:40	0	10	0	30	0	
	1:5	1	9	2	9	18	
	$1: 10$ $1: 20$	1	9 10	1	18 29	5 0	
			10	0	29	0	

1 Dose $=100,000$ minimum fatal doses.
Table 4.-Variation among strains of meningococci in response to antimeningococcic serum B

Strain	Dilution	Survivals	Deaths	Accumulated		Percent survivals	Dilution for 50 percent survivals
				Survivals	Deaths		
1027 I.	1:60	2	8	12	8	60	
	$1: 120$ $1: 240$	4 6	6 4	10 6	14 18	42 25	
1037 I.		6 7	4 3 3	-6	18 3	25 87	1:89.
	1:200	7	3	14	6	70	
1041 I.	1:400	7	3	7	9	44	1:340.
	1:120	5	5	20	5	80	
	$1: 240$ $1: 480$	9 6	1	15	${ }^{6}$	71	
963 II.	1:480	6 5	4	${ }_{6}^{6}$	10 5	37 64	1:370.
	1:120	3	7	4	12	25	
1054 II..	1:240	1	9	1	21	4.5	1:76.
	$1: 10$ $1: 20$	1	9 9	2	$\begin{array}{r}9 \\ 18 \\ \hline\end{array}$	19	
1108 II.	$1: 20$ $1: 40$	1	9 10	1	${ }_{28}^{18}$	${ }_{0} 5.2$	
	$1: 20$	4	6	9	${ }_{6} 8$	60	Less than 1:10.
	$1: 40$ $1: 80$	4 1	6 9	5 1	12 21	${ }_{4.5}^{29}$	1:25.
							1.25.

Since the infecting strain may be resistant to serum and sensitive to drugs or resistant to drugs and sensitive to serum, both agents should be considered in treating clinical cases. Each strain is apparently a law unto itself.

Although there is great variation in individual strains in their reaction to the drug or serum when given separately, it was found that all strains responded better to the combination of the two agents. This was true when the serum and drug were given before or after the culture. In the experiments presented here the culture (100,000 minimum fatal doses) was given 2 hours before the serum and drug. As mentioned before, the culture suspended in mucin was given intraperitoneally, the serum intraperitoneally, and the single dose of drug, in acacia, by mouth. The amounts of drug and serum given approximated those that would show 50 percent protection when given alone. Some of the results are shown graphically in figures 1 to 10.

In figure 1 it is seen that 100,000 minimum fatal doses of strain 1041 (I) kill all mice within 22 hours. The amounts of serum B and of sulfanilamide protected just 50 percent of the mice, though prolonging somewhat the lives of the others. The combination of the two agents protected all mice. In figure 2 the effect of serum B and sulfanilamide on strain 1027 (I) is shown. All untreated mice died within 21 hours; 60 percent of those receiving serum and 40 percent of those receiving sulfanilamide succumbed, whereas all mice receiving the combination survived. In figure 3 a similar effect is shown when the same strain, 1027 (I), and serum B are used with sulfapyridine. Mortality with serum alone was 60 percent, with sulfapyridine alone 50 percent, and with the combination it was 0 . In the next two figures the same strain is used, but with a polyvalent serum which gave practically no protection. Figure 4 shows the surprising result when sulfapyridine was combined with this serum. Mortality with culture or with serum was 100 percent, with sulfapyridine 30 percent, and with the combination it was 0 . Figure 5 shows the complete protection afforded by combining serum F, which showed no protection, with sulfanilamide. The effect here of the combined agents is more than additive. Figure 6 shows similar results with Group II strain 963. This strain is resistant to both serum and drug and the protection was not complete even with combined sulfanilamide and serum.

Such results suggested that horse serum in itself might have some property of aiding drug therapy. Strains 1027 (I) and 963 (II) were tested with sulfanilamide, using a pooled normal horse serum (G) in various low dilutions. Figures 7 and 8 show that no protective effect above that given by the drug alone could be elicited. Appar-

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.
ently there is something in the serum of immunized horses, not present in normal serum, that reacts favorably with the drugs studied. Even a poor immune serum seems to be of value in protecting mice when the drugs are also given.

We know that Group II strains are usually less responsive to serum than Group I strains. Group II strains show more individual variation in their response to drugs.

Figure 9 shows a Group II strain (1108) that proved to be especially drug resistant both experimentally and clinically. The mortality with the drug and culture was almost equal to that among the untreated mice with the usual dosage. When the amount of serum B that gave a 50 percent mortality was also used, the mortality was reduced to 20 percent.

Figure 10 shows a Group II (1054) strain that is decidedly serum resistant, though quite drug susceptible. We see that the combination of sulfapyridine and serum in the amounts used gave a complete protection.

DISCUSSION

The studies presented here cover about 75 experiments, each including about 200 mice. The results have been definite and constant and some of them seem well worth emphasizing at this time.

One interesting finding is the extremely small amounts of sulfanilamide and sulfapyridine that give some protection in mice. They have some degree of activity in concentration so low as to be at the limit of bacteriostatic action.

Weight for weight, sulfapyridine has shown a protective action against meningococcus infection in mice about ten times that of sulfanilamide under the conditions of the experiment. However the action of sulfapyridine has been somewhat less regular.

Individual strains of meningococci vary greatly in their response to the drugs, although those responding to treatment with sulfanilamide show a similar response to sulfapyridine and those resistant to one drug are also resistant to the other.

Likewise, there is a great difference in the response of individual strains to serum. For some strains, serum therapy has been more successful; for others the drugs have been far better. The case histories of the patients from whom the strains used in this study were isolated bear out this statement.

In all these experiments it has been consistently found that the combination of either of the drugs with serum has given results far better than with either agent alone. One of the serums had practically no protective action on any strain when used alone but marked protection could be obtained when it was given with the drugs.

Figure 9.

Figure 10.

Normal horse serum did not give this protection with the drugs. Apparently there is something in the serum of immunized horses, not measurable by the usual tests of antibodies, which acts with the drugs or is favorable to them.

The clinical histories associated with some of the strains of meningococci used are in accord with the findings of this study. Since there is such variation in response to serum and to drugs among various strains of meningococci, and since experimental infections with all strains respond so much better to the combination of drug and serum, it seems reasonable to treat patients with the combined therapy unless some contraindication is known. It is true that experiments with mice do not always mean that the same results will be obtained in man. But consistently good results in mice indicate that similar treatment should be given a fair trial in man.

REFERENCES

(1) Buttle, G. A. H., Gray, W. H., and Stephenson, Dora: Protection of mice against streptococcal and other infections by p-aminobenzenesulphonamide and related substances. Lancet, 1: 1286 (1936).
(2) Proom, H.: Therapeutic action of p-aminobenzenesulphonamide in meningococcal infection of mice. Lancet, 1: 16 (1937).
(8) Branham, S. E., and Rosenthal, S. M.: Studies in chemotherapy. V. Sulphanilamide, serum, and combined drug and serum therapy in experimental meningococcus and pneumococcus infections in mice. Pub. Health Rep., 52: 685 (1937).
(4) Brown, T. McP.: Protective action of sulfanilamide and antimeningococcus serum on meningococcus infection in mice. Bull. Johns Hopkins Hosp., 61: 272 (1937).
(5) Whitby, L. E. H.: Chemotherapy of pneumococcal and other infections with 2 (p-aminobenzenesulphonamide) pyridine. Lancet, 1: 1210 (1938).
(6) Schwentker, F. F., Gelman, Sidney, and Long, P. H.: The treatment of meningocuccic meningitis with sulfanilamide. Preliminary report. J. Am. Med. Assoc., 108: 1407 (1937).
(7) Willien, L. J.: Sulfanilamide therapy in meningococcic meningitis. J. Am. Med. Assoc., 110: 630 (1938).
(8) Carey, B. W.: The use of para-aminobenzenesulfonamide and its derivatives in the treatment of infections due to the β streptococcus hemolyticus, the meningococcus, and the gonococcus. J. Pediat., 11: 202 (1937).
(9) Hobson, F. G., Oxon, D. M., and MacQuaide, D. H. G.: Treatment of meningococcal meningitis with 2 -sulphanilyl-amidopyridine (M and $B 693$). Lancet, 2: 1213 (1938).
(10) Muraz, G., Chirle, H., and Quéguiner, A.: Treatment of meningococcal meningitis. Presse Méd., 46: 1113 (1938).
(11) Craddock, A. L.: Sulphanilamide in meningitis. Brit. Med. J., 1:1335 (1938).
(12) Somers, R. B. U.: M and B 693 in cerebrospinal fever. A review of 143 cases treated under field conditions. Lancet, 1: 921 (1939).
(18) Bryant, J., and Fairman, H. D.: Chemotherapy of cerebrospinal fever in the field. Lancet, 1: 923 (1939).
(14) Banks, H. Stanley: Serum and sulfanilamide in acute meningococcal meningitis. Lancet, 2: 7 (1938).
(15) Waghelstein, Julius M.: Sulfanilamide in the treatment of 106 patients with meningococcic infections. J. Am. Med. Assoc., 111: 2173 (1938).
(16) Smith, T. Cook, Maxson, W. T., and Murphey, D. F.'H.: Meningococcus meningitis observations in 157 cases in the Louisville City Hospital. South. Med. J., 31: 1168 (1938).
(17) Clyde, W. A., and Neely, M. G.: Clinical experience in the treatment of meningococcemia and meningococcic meningitis. Analysis of 118 cases treated with 4 different methods of treatment. South. Med. J., 32:594 (1939).
(18) Neter, Erwin: Bacteriostatic action of sulfanilamide upon meningococcus in spinal fluid. Proc. Soc. Exp. Biol. and Med., 38: 37 (1938).

SOME NEW DATA ON THE DISTRIBUTION OF POLIOMYELITIS VIRUS

Although poliomyelitis does not stand high numerically in the list of human diseases from the standpoint of either the average numbers of cases reported annually or as a cause of death, it is one of the dreaded epidemic infections. It is feared largely because of the crippling which is frequently a distressing sequel and because of the feeling of insecurity that arises from the lack of a specific preventive measure. A safe and effective specific prophylactic procedure may ultimately be evolved, but so far this is a hoped-for prospect rather than an accomplished fact.

Recent investigations on the distribution of poliomyelitis virus may have a possible bearing on the mode of spread of the disease, concerning which able investigators differ. Members of the Department of Medicine of Yale University have recently demonstrated, for the first time, the presence of poliomyelitis virus in sewage. ${ }^{1}$ Samples were collected from several localities in the city of Charleston, S. C., during the epidemic there in the summer of 1939. Inocula prepared from a sample taken from a pumping station at which sewage was received from a hospital where poliomyelitis patients were isolated caused experimental poliomyelitis in two monkeys, demonstrated by clinical symptoms and histologically in both animals and also in one animal by successful passage of the virus.

In another recent article, ${ }^{2}$ the recovery of poliomyelitis virus from the stools of healthy contacts was reported. At least three such instances had been reported previously in the literature, and also the detection of a healthy carrier without history of contact with poliomyelitis cases. The facts developed from the study of this institutional outbreak, in which the virus of poliomyelitis was recovered from the stools of 3 out of 12 apparently healthy children in contact with cases and in a healthy adult nurse intimately associated with cases, support the theory that the infection is transferred by direct personal contact and offer corroborative evidence that the virus of poliomyelitis is probably spread throughout the general population by healthy carriers.

[^5]
DEATHS DURING WEEK ENDED DECEMBER 16, 1939

[From the Weekly Health Index, issued by the Bureau of the Census, Department of Commerce]

${ }^{1}$ Data for 86 cities.

PREVALENCE OF DISEASE

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring

UNITED STATES

CURRENT WEEKLY STATE REPORTS*

These reports are preliminary, and the figures are subject to change when later returns are received by the State health officers.

In these and the following tables, a zero (0) indicates a positive report and has the same significance as any other figure, while leaders (_-) represent no report with the implication that cases or deaths may have occurred but were not reported to the State health officer.

Cases of certain diseases reported by telegraph by State health officers for the week ended Dec. 23, 1939, rates per 100,000 population (annual basis), and comparison with corresponding week of 1938 and 5 -year median

Division and State	Diphtheria				Influenza				Measles			
	$\begin{aligned} & \text { Dec. } \\ & 23, \\ & \text { 1939, } \\ & \text { rate } \end{aligned}$	Dec. 23. 1939, cases	Dec. 24. cases	$\begin{gathered} 1934- \\ 38, \\ \text { me } \\ \text { dian } \end{gathered}$	$\begin{gathered} \text { Dec. } \\ 23, \\ 1939, \\ \text { rate } \end{gathered}$	Dec. 23. 1939, case	$\begin{aligned} & \text { Dec. } \\ & 24, \\ & \text { 1938, } \\ & \text { casisis } \end{aligned}$	$\begin{gathered} 1934- \\ \text { 38, } \\ \text { me- } \\ \text { dian } \end{gathered}$	Dec. 23, 1939, rate	$\begin{aligned} & \text { Dec. } \\ & 23, \\ & \text { 1939, } \\ & \text { cases } \end{aligned}$	Dec. ${ }_{193}^{24 .}$ cases	$\begin{aligned} & \text { 1934- } \\ & \text { 38, } \\ & \text { me- } \\ & \text { dian } \end{aligned}$
new eng.												
Maine	24000000	400$\mathbf{0}$00	1160406	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 7 \\ & 0 \\ & 6 \end{aligned}$	--...-	--...-.-	1	1	27820	462	$\begin{array}{r}1 \\ \hdashline--1\end{array}$	22
New Hampshire.....												
Vermont					$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \end{aligned}$				335	25	5	5
Massachusetts.					$\begin{aligned} & 0 \\ & 7 \end{aligned}$	-----			209	178	196	195
Rhode Island.					${ }^{-\cdots}$	${ }^{-\cdots}$	8		389288	51	1	3
Connecticut.......-.								7		97	67	76
Mid. ATL.												
New York	10	26	17	32	${ }^{1} 10$	${ }^{115}$	${ }^{1} 14$	${ }^{1} 14$	158	395	915	579
New Jersey-.........-	$\begin{aligned} & 11 \\ & 22 \end{aligned}$	9444	564	14	10	8	4	10	1534	1366	1367	36
Pennsylvania........-												- 127
E. No. CEN.												
Ohio...	13 33	1722	17	37	621219542	$\begin{array}{r} 8 \\ 14 \\ 14 \\ 5 \\ 24 \end{array}$	8	531	61	8	158	5212
Indiana ${ }^{\text {a }}$			17	24								
Illinois...	2650	395	279	4011				34	14	21	15	27
Michigan ${ }^{\text {2 }}$								1	218	206	253	111
W isconsin...-.-.-...-		0	3	3			69	55	146	83	247	103
w. no. cen.					42							
Minnesota	2030030014	10	2	3	66	3	210	--	60	3169	289	54
Iowa....			13	6		3		5	140		171	9
Missouri.		23	10	22	6	5	59	85	8	6	2	15
North Dakota		0	5	2	190	26	6	3	15	2	336	14
South Dakota		4	9	4	15	2	1		23	3	128	2
Nebraska		0	2	5			1		4	1	5	5
Kansas.-		5	4	10	791	283	3	4	335	120	5	10
so. ATL.												
Delaware.	34	11	0	0			10	143	983	5	1	3
Maryland 2-.........-			5	12	 25 8					$\stackrel{1}{2}$	1073	41
Dist. of Col.	$\begin{array}{r}8 \\ 28 \\ \hline 8\end{array}$	1	6	10		8 1	3		16			
Virginia ${ }^{3}$.		159	35	30	$\begin{aligned} & 62 \\ & 40 \end{aligned}$	3315	$\begin{array}{r} 111 \\ 18 \end{array}$	4312	7	445	4912	$\begin{array}{r}49 \\ 43 \\ \hline 25\end{array}$
West Virginia	24		10	19					13			
North Carolin ${ }^{\text {4 }}$-....	70	48	39	${ }_{3} 3$	644,474	$\begin{array}{r} 44 \\ 1,638 \\ 975 \\ 11 \end{array}$	$\left.\begin{array}{r} 236 \\ 68 \\ 4 \end{array} \right\rvert\,$		212	145	225	225
South Carolina ${ }^{4}$	$\begin{aligned} & 19 \\ & 25 \\ & 12 \end{aligned}$	$\begin{array}{r} 7 \\ 15 \\ 4 \end{array}$	3					$\left.\begin{array}{r} 236 \\ 68 \\ 4 \end{array} \right\rvert\,$	$\left.\begin{array}{r} 3 \\ 15 \\ 0 \end{array} \right\rvert\,$	190	3 28 10	703
Georgia			10	11	1,619							
Florida 4...............			8	11	33							

${ }^{*}$ Reports fer two wecks are published in this issua, including the final week of 1939. Beginning in the next issue the publication of these reforts will be advanced a week and will be for the week immediately preceding the wtek of issue.

Cases of certain diseases reported by telegraph by State health officers for the week ended Dec. 23, 1939, rates per 100,000 population (annual basis), and comparison with corresponding week of 1938 and 5-year median-Continued

Division and State	Diphtheria				Influenza				Measles			
	$\begin{aligned} & \text { Dec. } \\ & 23, \\ & 1939, \\ & \text { rate } \end{aligned}$	Dec. 23, cases	Dec. 24. 1938, cases case	$\begin{gathered} \text { 1934- } \\ \text { me } \\ \text { me- } \\ \text { dian } \end{gathered}$	$\begin{aligned} & \text { Dec. } \\ & \text { 23, } \\ & \text { 1939, } \\ & \text { rate } \end{aligned}$	Dec. 23, 1939, cases	$\begin{aligned} & \text { Dec. } \\ & 24, \\ & \text { 1938, } \\ & \text { cases } \end{aligned}$		Dec. 23, 1939, rate rate	$\begin{aligned} & \text { Dec } \\ & 23, \\ & 1939, \\ & \text { cases } \end{aligned}$	Dec 24. 1938, cases	$\begin{gathered} 1934- \\ 38, \\ \text { me } \\ \text { dian } \end{gathered}$
E. so. CEN.												
Kentucky	$\begin{aligned} & 16 \\ & 25 \\ & 16 \\ & 23 \end{aligned}$	91499	127184	152820	7	99	3517	34 50	2 1 76 43		814	601219
Tennessec 4.					175							
Alabama ${ }^{\text {- }}$					700	398	115	156	14	8	81	
W. SO. CEN.												
Arkansas.	4027	16	79	713	1962	791	10610	521280	02	0	36	179
Louisiana 4												
Oklahoms.	1070	584	1947	1974	239495	119597	71427		4	2	26	
Texas ${ }^{15}$								80 427	70	85	34	39
mountans												
Montana.	0	0	2	3	2,865	300	12	4	13120	142	17383	120
Idaho....												
W yoming	2253	1	4	1	\cdots	15			262	1224	31212	212
Colorado.		11	12	11		2452			11662			
New Mexico.	25740	$\begin{aligned} & 2 \\ & 6 \\ & 0 \\ & 0 \end{aligned}$	530	430				3		24 5	16	23
Arizona......						75	$\begin{array}{r} 131 \\ 17 \end{array}$	76	37606	361	29	
Utah ${ }^{2}$					6,833	688						24
pacific												
Washington.-.......-	$\begin{array}{r} 3 \\ 10 \\ 18 \end{array}$	$\begin{array}{r} 1 \\ \mathbf{2} \\ 22 \end{array}$	2042	2133	497	100	12	3935	$\begin{array}{r} 1,289 \\ 184 \\ 156 \end{array}$	$\begin{array}{r} 118 \\ 37 \\ 190 \end{array}$	$\begin{array}{r} 146 \\ 13 \\ 702 \end{array}$	1346
Oregon.												
California					107	131	23					
Total	21	525	543	721	283	5,997	1,634	1,634	101	2, 502	4,544	4,544
51 weeks.	18	323,583	29,312	23,312	169	182, 255	64, 354	116,947	295	372, 517	794, 431	719,482
Division and State	Meningitis, menirgococcus				Poliomyelitis				Scarlet fever			
	$\begin{aligned} & \text { Dec. } \\ & \text { 233, } \\ & \text { 1939, } \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 23, \\ & 1939, \\ & \text { cases } \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 24, \\ & 1938, \\ & \text { cases } \end{aligned}$	$\begin{aligned} & \text { 1934- } \\ & \text { 38, } \\ & \text { me- } \\ & \text { dian } \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 23, \\ & 1939, \\ & \text { rate } \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 223, \\ & 1939, \\ & \text { cases } \end{aligned}$	Dec. 24, 1938, cases	$\begin{gathered} 1934- \\ 38, \\ \text { me- } \\ \text { dian } \end{gathered}$	$\begin{aligned} & \text { Dec. } \\ & 23, \\ & 1939, \\ & \text { rate } \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 23, \\ & \text { 1939, } \\ & \text { cases } \end{aligned}$	Dec. 24, 1938, cases	$\begin{aligned} & \text { 1934- } \\ & \text { 38, } \\ & \text { me- } \\ & \text { dian } \end{aligned}$
NEW ENG.												
Maine	000000	000000	000100	1000200	2.4	10020	0000000	000000	$\begin{array}{r} 97 \\ 0 \\ 94 \\ 103 \\ 23 \\ 181 \end{array}$	$\begin{array}{r} 16 \\ 0 \\ 7 \\ \mathbf{8 8} \\ \mathbf{3} \\ 61 \end{array}$	$\begin{array}{r} 7 \\ 9 \\ 9 \\ 137 \\ 7 \\ 54 \end{array}$	17891782854
Vermont_..............-												
Massachusetts.												
Rhode Island.												
Connecticut.-												
MID. ATL.												
New York...-.-.-....-	$\begin{aligned} & 0.4 \\ & 0 \\ & 5 \end{aligned}$	109	300	505	0.42.4	2		2	141	353113276		433
New Jersey							100	0	135140		33349343	103303
Pennsylvania-.-.-.-.-.												
E. NO. CEN.												
Ohio....---------------	$\begin{aligned} & 0.8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10000	12000	3	0.8	10123	$\mathbf{0}$$\mathbf{0}$$\mathbf{0}$$\mathbf{0}$$\mathbf{0}$	00110	178160212311228	$\begin{gathered} 231 \\ 108 \\ 323 \\ 294 \\ 130 \end{gathered}$	$\begin{aligned} & 258 \\ & 133 \\ & 355 \\ & 442 \\ & 188 \end{aligned}$	274172509344257
Indiana ${ }^{2}$-.............-				1	0							
Illinois.				7	0.7							
Michigan ${ }^{2}$				1	2.1							
W isconsin.				0	5							
W. No. Cen.												
Minnesota.-..........-	0	0	0	12	1.9	14	00	10	231146	119	8	140
Iowa-...-.-.-...........										72	132	132
Missouri.........-.-...-	1.3	1	1	1	0	0	0	0	165	128	81	101
North Dakota.	0	0	0	0	0	0	0	0	161	22	9	25
South Dakota	0	0	0	0	8	1	0	0	30	4	17	23
Nebraska.	0	0	0	0	8	2	0	0	61	16	12	40
Kansas...-...	6	2	2	2	0	0	0	1	291	104	115	125

See footnotes at end of table.

Cases of certain diseases reported by telegraph by State health officers for the week ended Dec. 28, 1939, rates per 100,000 population (annual basis), and comparison with corresponding week of 1938 and 5-year median-Continued

See footnotes at end of table.

Cases of certain diseases reported by telegraph by State health officers for the week ended Dec. 29, 1939, rates per 100, Coo population (annual basis), and comparison with corresponding week of 1938 and 5 -year median-Continued

[^6]Cases of certain diseases reported by State health officers for the week ended Dec. so, 1939, rates per 100,000 population (annual basis), and comparison with corresponding week of 1938 and 5 -year median

See footnotes at end of table.

Cases of certain diseases reported by State health officers for the week ended Dec. 50, 1939, rates per 100,000 population (annual basis), and comparison with corresponding week of 1938 and 5-year median-Continued

See footnotes at end of table.

Cases of certain diseases reported by State health officers for the week ended Dec. 50, 1939, rates per 100,000 population (annual basis), and comparison with corresponding week of 1938 and 5 -year median-Continued

See footnotes at end of table.

Cases of certain. diseases reported by State health officers for the week ended Dec. SO, 1939, rates per 100,000 population (annual basis), and comparison with corresponding week of 1938 and 5 -year median-Continued

[^7]
SUMMARY OF MONTHLY REPORTS FROM STATES

The following summary of cases reported monthly by States is published weekly and covers only those States from which reports are received during the current week.

Nocember 1859

Chickenpox:	Cases
Colorado	25
Georgia	33
Kansas.	0
Louisiana	38
Maine	216
Mississippi	350
Montana.	208
Nebraska	57
New Mexico	99
New York	1,994
North Dakot	36
Ohio	43
Otlahoma	44
Tennessee	88
Conjunctivitis, acute infectious:	
Georgia.	
New M	
Dengue: Georgia	
Diarrhea:	
New Mexico.	4
Ohio (under 2 years; enteritis included)	25
Dysentery:	
Colorado (bacillary) ...-	2
Georgia (amoebic)......	5
Georgia (bacillary) .-...	9
Georgia (unspecified)-.-	2
	5
Louisiana (amoebic)...-	6
Louisiana (bacillary)..-	1
Maine (bacillary) --.--	1
Mississippi (amoebic)--	113
Mississippi (bacillary).-	246
New Mexico (amoebic).	2
New Mexico (bacillary)	9
New Yort (amoebic)	8
New York (bacillary).-	71
Ohio (amoebic) --	1
Ohio (bacillary)	2
Oklahoma (bacillary).-	13
Tennesse (amoebic) -	5
Tennessee (bacillary)	11
Encephalitis, epidemic or	
Colorado	1
Kansas	5
Montana	4
Now Mexico	2
Now York	7

Hookworm disease:
Georgia_-.................. 108
Georgia_-................-. 4, 108
Mississippi................. 697
mentigo contagiosa:
Kansas.
Montana
Tennessee
Lead poisoning: Ohio
Leprosy:
Mississippi
Oklahoma
Mumps:
Colorado
Georgis
Kansas..
Maine.
Mississippi
Montana
New Mexico
North Dakota
Ohio
Oklahoma
Tennessee
Ophthalmia neonatorum:
Mississippi
New York
Oklahoma
Tennessee -......:-
Mississippi.
New Mexico
Ohio
Tennessee
Rabies in animals:
Louisiana
Mississippi
New Mexico
New Yort ${ }^{1}$

Rocky Mountain spotted Cases
fever: New York 1

Scabies:

Kansas_-................-. 20
Screw worm infection:
Georgia...................... 1
Septic sore throat:

Georgia Kansas	

Kansas.............................. 17
Louisiana-...............-. $\quad 8$
Nebraska
New Mexico-............-.-.
2
New Mexico..................... $\quad 11$
Ohio 10
Oklahoma-......................... 29
Tetanus:

Trachoma:
\quad Mississippi...................
3

Oklahoma
Trichinosis:
New York............... 16
Tularaemia:
Colorado.................. 2

Louisiana

Oklahoma-...................... 1
Typhus fever:

New York
$\begin{array}{r}7 \\ \hline\end{array}$

IExclusive of New York City.

Summary of monthly reports from States-Continued

November 1959-Continued

${ }^{1}$ Exclusive of New York City.

WEEKLY REPORTS FROM CITIES

City reports for week ended Dec. 16, 1939

This table summarizes the reports received weekly from a selected list of 140 cities for the purpose of showing a cross section of the current urban incidence of tue communicable diseases listed in the table.

1 Figures for Boise estimated; report not received.

City reports for week ended Dec. 16, 1939-Continued

Biate and city	Diph theria cases	Influenzs		$\begin{gathered} \text { Mear } \\ \text { sles } \\ \text { cases } \end{gathered}$	Pnoumonia deaths	$\begin{aligned} & \text { Scar- } \\ & \text { lete } \\ & \text { fever } \\ & \text { cases } \end{aligned}$	$\begin{gathered} \text { Small } \\ \text { pox } \\ \text { cases } \end{gathered}$	Tuber culosis deaths	Typhoid fever case		Deaths, causes									
		Cases	Deaths																	
minols:																				
Alton---...---	0	1	1	0	0	2	0	0	0	0	8									
Chicago......-	6	13	0	12	87	174	0		0	20	709									
Moline.....-	0		0	0	0	3	0	0	0	1	12									
Springfield...-	0		0	0	4	0	0	0	0	3	28									
Michigan:		1		10	25		0													
Flint.-..-	0	1	0	1	4	9489	0	12	0	15	274									
Grand Rapids	0		0	1	3	21	0	0	0	4	46									
Wisconsin:				0			0		0											
Kenossa......-	0		0	0	1	1	0	0	0	0	10									
Milwaukee...-	0		0	2	2	45	0	8	0	11	108									
Racine........	0		0	0	0	2	0	0	0	10	10									
Superior-.....-	0		0	0	0	3	0	0	0	0	6									
Minnesota:																				
Duluth.....-.	0		0	38	1	1	0	0	0	0	34									
Minneapolis...	0		0	3	7	${ }_{15}^{20}$	0	0	0	12	101									
Iowa:				3	5	15	0	2	0											
Cedar Rapids.	1			2		1	0		0	1										
Davenport....	2			1		9	0		0	0										
Des Moines..-	0		0	25	0	${ }_{6}^{11}$	2	0	0	0	83									
Sioux City ${ }^{\text {Waterlo }}$.-.	0			0		8	0		0	0										
Kansas City.-	0			,	5	24	0	4	0	0	97									
St. Joseph....-	0	2	0	0	4	26 26	0	0	0	0	25									
Fargo - . . . -	0		0	0	1	0	0	0	0	0	9									
Grand Forks.-	0		0	0	0	4	0	0	0	3	---									
South Dakota:																				
Aberdeen.	1			0		1	0		0	0										
Nebraska:																				
Kansas:											57									
Lawrence......	0	7	0	0	1	0	0	0	0											
Topeks	0	1	1	0	0	4	0	1	0	0	11									
Wichita.	1		0	30	2	1	0	0	0	2	0									
Delaware:																				
Wilmington..-	1		0	0	3	3	0	0	0	5	36									
Maryland: Baltimore	4	7	0	2	14	6					209									
Cumberland.-	0		0	0	1	0	0	0	0	0	5									
Frederick	0		0	0	0	0	0	0	0	0	3									
District of Columbia:																				
Lynchburg...--	2	6	0	0	1	2	0	0	0		10									
Richmond.-.--	1		1	11	6	4	0	2	0	2	63									
Roanoke.......	0		0	1	0	8	0	0	0	0	15									
Huntington...-	1			0		0	0		0	0	27									
Wheeling-..---	0		0	2	5	3	0	1	0	1	28									
Raleigh......--	1		0	0	0	1	0	1	0	0	8									
Wilmington..-	1		0	0	3	0	0	1	0	0	15									
Charleston...-	1	42	0	0	2	1	0	1	0	0	18									
Florence....-.		15	0	0	1	2	0	1	0	0	11									
Arlanta-...-.-	1	28	0	0	${ }^{6}$	1	0	3	0	0	78									
Savannah.-.---	1	16	0	0	4	8	0	2	0	0	40									
Florida:									$!$											
Miami.......--	1	8	0	1	5	1	0	2	0	0	39									
Tampa.........		2	2					0			28									

City reports for week ended Dec. 16, 1939-Continued

State and city	Diphtheria cases	Influenza		Mea8les cases	Pneumonia deaths	Scarlet fever cases	$\begin{gathered} \text { 8mall- } \\ \text { pax } \\ \text { cases } \end{gathered}$	Tuber culosis deaths	Typhoid lever cases		$\begin{aligned} & \text { Deaths, } \\ & \text { causes } \end{aligned}$									
		Cases	Deaths																	
Ashland.......-	0	$1{ }^{-}$	0	0	0	1	0	1	0	1	20									
Lexington.-.	1		0	0	0	2	0	1	0	6	17									
Louisville....-	0		0	2	10	12	0	3	0	82	77									
Tennessee:	1		0	0	1	9	0	1	0		23									
Kımphis......-	0		3	1	4	9	0	4	0	6	77									
Nashville-...--	0		0	12	5	3	0	4	0	2	45									
Alabama: ${ }_{\text {airmam }}$																				
Birmingham--	4	13	2	0	8	8	0	5	1	0	70									
Montgomery.-	0	15		1		3	0		0	0										
Arkansas:																				
Fort Smith..--	0			0		0	0		1	0										
Little Rock.--	0	3	0	0	3	1	0	1	0	3	14									
Louisiana:						0	0	0	0	0	7									
Lake Charies.-	5	2	2	0	17	18	0	11	1	0	180									
Shreveport...-	1		0	0	10	0	0	2	0	0	83									
Oklahoma:																				
OklahomaCity-	1		0	0	4	1	0	1	0	0	41									
Fort Worth...	0		0	0	2	6	0	0	0	11	34									
Gaiveston....-	8		0	0	5	5	0	2	0	0	${ }_{6}^{19}$									
Hanston--1----	1	12	0	52	4	0	0	6	0	0	67									
Montana:																				
Billings	0		0	0	0	0	0	0	0	0	12									
Great Frals...-	0		0	0	0	2	0	0	0	0	8									
Missonla.-.-----	0		0	0	0	0	0	0		6	7									
Idaho:																				
Colorado																				
	4		0	4	2	8	0	0	0	4	79									
Utah:	0		0	0		1														
Salt Lake City.	1		0	20	4	5	0	2	0	30	35									
Seattio---...--	0		0	17	8	4	0	${ }^{8}$	1	2	89									
Spokane-..-.-.	0	1		22^{2}	1	7	0		0	1	28									
Portland.....-	0	1	0	6	1	2	0	2	0	5	82									
Los Angeles..-	8	12	0	5	13				2											
Sacramento.--	1		1	0	2	1	0	12	1	18	188									
San Francisco.	0		0	8	8	14	0		1		207									

City reports for week ended Dec. 16, 1939-Continued

Encephalitis, epidemic or lethargic.-Cases: Pawtucket, 1; Indianapolis, 1; Wheeling, 1. Pellagra.-Cases: Charleston, S. C., 3; Miami, 1; Little Rock, 1.
Typhusferer.-Gases: Atlanta, 1; Savannah, 1; Nashville, 4; Mobile, 1; Montgomery, 1; Dallas, 2.-Deaths: Nashville, 1; Mobile, 1; Dallas, 1.

FOREIGN REPORTS

CANADA

Prouinces-Communicable diseasas-Week ended December 2, 1939.— During the week ended December $\mathbf{2}$, 1939, cases of certain communicable diseases were reported by the Department of Pensions and National Health of Canada as follows:

Disease	Prince Edward Island	Nova Scotia	New Bruns- wiek	Que-	$\begin{gathered} \text { Ontar- } \\ \text { io } \end{gathered}$	$\begin{aligned} & \text { Mani: } \\ & \text { toba } \end{aligned}$	Sas-ratehewan	Alber-	British Colum bis	Total
Cerebrospinal meningitis.		1		1						2
Chickenpox:	12	12	8	249	457	84	40	81	81	974
Diphtheria		1	2	2	1	12	5	1	,	45
Dysentery		55		2	4	1			3	${ }_{6}$
Lethargic encephalitis						1				1
Measles..			2	132	298	15	4	5	25	479
Mumps.--				59	152	8			8	227
Pneumonis.	1	10			26	1			5	43
Poliomyelitis.					2					2
Scarlet fever	24	9	29	121	206	18	6	38	23	474
Tuberculosis.		1	10	71	37	25	13			157
Typhoid and paratyphoid fever			1	10	6		4		1	
Whooping cough.........--		37		106	79	39	37	12	8	818

REPORTS OF CHOLERA, PLAGUE, SMAELPOX, TYPHUS FEVER, AND YELLOW FEVER RECEIVED DURING THE CURRENT WEEK

Norm.-A camulative table giving current information regarding the world prevalence of quarantinable diseases for a 6-month period appeared in the Public Healita Reports of December 29, 1939, pages $2310-$ 2833. A cumulative table will appear in future issues of the Public Heal.th Reports for the last Friday of each month.

Plague

Hawaii Territory-Island of Hawaii-Hamakua District-Paauhàu area.-A rat found on December 6, and one found on December 8, 1939, in Paauhau area, Hamakua District, Island of Hawaii, T. H., have been proved positive for plague.

Typhas Fever

Mexico-Tampico.-During the week ended December 9, 1939, one case of typhus fever was reported in Tampico, Mexico.

[^0]: ${ }^{1}$ From the Division of Industrial Hygiene, National Institute of Health. For the second quarter of 1939, see Public Health Reports for October 20, 1939 (54: 1878-1880).
 ${ }^{2}$ International List, 151-153. These titles do not include sunburn, poisoning by organic substances, or the mycoses.

[^1]: ${ }^{1}$ Includes furuncle, carbuncle; phlegmon, acute abscess; and other diseases of the skin and annexa, and of the cellular tissue (titles 151-153 of the International List of Causes of Death, 1929).

[^2]: ${ }^{1}$ The tabulation of these data was made possible by the support and cooperation of the Scripps Foundation for the Study of Population Problems. Mr. I. C. Plummer, Chief, Division of Vital Statistics of the State Department of Health of Ohio, not only gave access to the original records, but also made available the facilities of his office during the tabulation of the data. This material was taken from a thesis submitted to the faculty of the Graduate School of the University of Wisconsin in partial fulfillment of the requirements for a Degree of Doctor of Philosophy.

[^3]: ${ }^{1}$ Measles, whooping cough, scarlet fever, diphtheria.

[^4]: ${ }^{1}$ From the Division of Biologics Control, National Institute of Health.
 ${ }^{2}$ Presented before Section VII of the Third International Congress for Microbiology in New York City, September 4. 1939.

[^5]: ${ }^{1}$ Poliomyelitis virus in sewage. By John R. Paul, James D. Trask, and C. S. Culotta. Science, e0: 258-259 (September 15, 1939).
 ${ }^{2}$ Recovery of the virus of poliomyelitis from the stools of healthy contarts in an institutional outbreak By S. D. Kramer, A. G. Glliam, and J. G. Molner. Pub. Health Rep., 5i: 19141922 (October 27, 1939).

[^6]: ${ }^{1}$ New York City only.
 ${ }^{2}$ Period ended earlier than Saturday.
 ${ }^{2}$ Rocky Mountain spotted fever, week ended Dec. 23, 1939, Virginia, 1 case.
 ${ }^{4}$ Typhus fever, week ended Dec. 23, 1939, 49 cases as follows: North Carolina, 2; South Carolina, 1; Georgia, 19; Florida, 3; Tennessee, 1; Alabama, 4; Louisiana, 4; Texas, 15.
 ${ }^{5}$ There were 26 new cases of diphtberia in Texas during the week ended July 15 instead of 119 as published in t上 $\boldsymbol{7}$ Public Health Reports of July 28, 1839, p. 1397.

[^7]: ${ }^{1}$ New York City only.
 ${ }^{2}$ Period ended earlier than Saturday.
 ${ }^{3}$ Rocky Mountain spotted fever, week ended Dec. 30, 1939, Virginia, 1 case.
 ${ }^{4}$ Typhus fever, week ended Dec. 30, 1939, 36 cases as follows: North Carolina, 2; Bouth Carolina 4; Cleorgia, 10; Florida, 5; Alabama, 4; Mississippi, 4; Louisiana, 4; Texas, 2; California, 1.

